Designed to help motivate the learning of advanced calculus by demonstrating its relevance in the field of statistics, this successful text features detailed coverage of optimization techniques and their applications in statistics while introducing the reader to approximation theory. The Second Edition provides substantial new coverage of the material, including three new chapters and a large appendix that contains solutions to almost all of the exercises in the book. Applications of some of these methods in statistics are discusses.

An up-to-date version of the complete, self-contained introduction to matrix analysis theory and practice Providing accessible and in-depth coverage of the most common matrix methods now used in statistical applications, Matrix Analysis for Statistics, Third Edition features an easy-to-follow theorem/proof format. Featuring smooth transitions between topical coverage, the author carefully justifies the step-by-step process of the most common matrix methods now used in statistical applications, including eigenvalues and eigenvectors; the Moore-Penrose inverse; matrix differentiation; and the distribution of quadratic forms. An ideal introduction to matrix analysis theory and practice, Matrix Analysis for Statistics, Third Edition features: • New chapter or section coverage on inequalities, oblique projections, and antieigenvalues and antieigenvectors • Additional problems and chapter-end practice exercises at the end of each chapter • Extensive examples that are familiar and easy to understand • Self-contained chapters for flexibility in topic choice • Applications of matrix methods in least squares regression and the analyses of mean vectors and covariance matrices Matrix Analysis for Statistics, Third Edition is an ideal textbook for upper-undergraduate and graduate-level courses on matrix methods, multivariate analysis, and linear models. The book is also an excellent reference for research professionals in applied statistics. James R. Schott, PhD, is Professor in the Department of Statistics at the University of Central Florida. He has published numerous journal articles in the area of multivariate analysis. Dr. Schott’s research interests include multivariate analysis, analysis of covariance and correlation matrices, and dimensionality reduction techniques.

The first systematic, book-length treatment of the subject. Begins with a general introduction and the formal mathematical background behind qualitative and quantitative robustness. Stresses concepts. Provides selected numerical algorithms for computing robust estimates, as well as convergence proofs. Tables contain quantitative robustness information for a variety of estimates.

The Wiley-Interscience Paperback Series consists of selected booksthat have been made more accessible to consumers in an effort toincrease global appeal and general circulation. With these newunabridged softcover volumes, Wiley hopes to extend the lives ofthese works by making them available to future generations ofstatisticians, mathematicians, and scientists. "Books such as this that bring together, clarify, and summarizerecent research can lead to a great increase of interest in thearea. . . . a major achievement in describing many aspects ofspatial data and discussing, with examples, different methods ofanalysis." –Royal Statistical Society "Dr. Ripley’s book is an excellent survey of the spatialstatistical methodology. It is very well illustrated with examples[that] give a clear view of the wide scope of the subject, the wayin which techniques often have to be tailored to particularapplications, and the different sorts of spatial data thatarise." –The Bulletin of the London Mathematics Society Spatial Statistics provides a comprehensive guide to theanalysis of spatial data. Each chapter covers a particular dataformat and the associated class of problems, introducing theory,giving computational suggestions, and providing examples. Methodsare illustrated by computer-drawn figures. The book serves as anintroduction to this rapidly growing research area formathematicians and statisticians, and as a reference to newcomputer methods for researchers in ecology, geology, archaeology,and the earth sciences.

A valuable guide to conducting experiments and analyzing dataacross a wide range of applications Experimental design is an important component of the scientificmethod. This book provides guidance on planning efficientinvestigations. It compiles designs for a wide range ofexperimental situations not previously found in accessible form.Focusing on applications in the physical, engineering, biological,and social sciences, Planning, Construction, and StatisticalAnalysis of Comparative Experiments is a valuable guide todesigning experiments and correctly analyzing and interpreting theresults. The authors draw on their years of experience in theclassroom and as statistical consultants to research programs oncampus, in government, and in industry. The object is always tostrike the right balance between mathematical necessities andpractical constraints. Serving both as a textbook for students of intermediatestatistics and a hands-on reference for active researchers, thetext includes: A wide range of applications, including agricultural sciences,animal and biomedical sciences, and industrial engineeringstudies General formulas for estimation and hypothesis testing,presented in a unified and simplified manner Guidelines for evaluating the power and efficiency of designsthat are not perfectly balanced New developments in the design of fractional factorials withnon-prime numbers of levels in mixed-level fractionalfactorials Detailed coverage on the construction of plans and therelationship among categories of designs Thorough coverage of balanced, lattice, cyclic, and alphadesigns Strategies for sequences of fractional factorials Data sets and SAS® code on a companion web site An ideal handbook for the investigator planning a researchprogram, the text comes complete with detailed plans of experimentsand alternative approaches for added flexibility.

A timely convergence of two widely used disciplines Random Graphs for Statistical Pattern Recognition is the first book to address the topic of random graphs as it applies to statistical pattern recognition. Both topics are of vital interest to researchers in various mathematical and statistical fields and have never before been treated together in one book. The use of data random graphs in pattern recognition in clustering and classification is discussed, and the applications for both disciplines are enhanced with new tools for the statistical pattern recognition community. New and interesting applications for random graph users are also introduced. This important addition to statistical literature features: Information that previously has been available only through scattered journal articles Practical tools and techniques for a wide range of real-world applications New perspectives on the relationship between pattern recognition and computational geometry Numerous experimental problems to encourage practical applications With its comprehensive coverage of two timely fields, enhanced with many references and real-world examples, Random Graphs for Statistical Pattern Recognition is a valuable resource for industry professionals and students alike.

While mapped data provide a common ground for discussions between the public, the media, regulatory agencies, and public health researchers, the analysis of spatially referenced data has experienced a phenomenal growth over the last two decades, thanks in part to the development of geographical information systems (GISs). This is the first thorough overview to integrate spatial statistics with data management and the display capabilities of GIS. It describes methods for assessing the likelihood of observed patterns and quantifying the link between exposures and outcomes in spatially correlated data. This introductory text is designed to serve as both an introduction for the novice and a reference for practitioners in the field Requires only minimal background in public health and only some knowledge of statistics through multiple regression Touches upon some advanced topics, such as random effects, hierarchical models and spatial point processes, but does not require prior exposure Includes lavish use of figures/illustrations throughout the volume as well as analyses of several data sets (in the form of "data breaks") Exercises based on data analyses reinforce concepts

Bayesian methods combine the evidence from the data at hand with previous quantitative knowledge to analyse practical problems in a wide range of areas. The calculations were previously complex, but it is now possible to routinely apply Bayesian methods due to advances in computing technology and the use of new sampling methods for estimating parameters. Such developments together with the availability of freeware such as WINBUGS and R have facilitated a rapid growth in the use of Bayesian methods, allowing their application in many scientific disciplines, including applied statistics, public health research, medical science, the social sciences and economics. Following the success of the first edition, this reworked and updated book provides an accessible approach to Bayesian computing and analysis, with an emphasis on the principles of prior selection, identification and the interpretation of real data sets. The second edition: Provides an integrated presentation of theory, examples, applications and computer algorithms. Discusses the role of Markov Chain Monte Carlo methods in computing and estimation. Includes a wide range of interdisciplinary applications, and a large selection of worked examples from the health and social sciences. Features a comprehensive range of methodologies and modelling techniques, and examines model fitting in practice using Bayesian principles. Provides exercises designed to help reinforce the reader’s knowledge and a supplementary website containing data sets and relevant programs. Bayesian Statistical Modelling is ideal for researchers in applied statistics, medical science, public health and the social sciences, who will benefit greatly from the examples and applications featured. The book will also appeal to graduate students of applied statistics, data analysis and Bayesian methods, and will provide a great source of reference for both researchers and students. Praise for the First Edition: “It is a remarkable achievement to have carried out such a range of analysis on such a range of data sets. I found this book comprehensive and stimulating, and was thoroughly impressed with both the depth and the range of the discussions it contains.” – ISI - Short Book Reviews “This is an excellent introductory book on Bayesian modelling techniques and data analysis” – Biometrics “The book fills an important niche in the statistical literature and should be a very valuable resource for students and professionals who are utilizing Bayesian methods.” – Journal of Mathematical Psychology

An up-to-date approach to understanding statistical inference Statistical inference is finding useful applications in numerousfields, from sociology and econometrics to biostatistics. Thisvolume enables professionals in these and related fields to masterthe concepts of statistical inference under inequality constraintsand to apply the theory to problems in a variety of areas. Constrained Statistical Inference: Order, Inequality, and ShapeConstraints provides a unified and up-to-date treatment of themethodology. It clearly illustrates concepts with practicalexamples from a variety of fields, focusing on sociology,econometrics, and biostatistics. The authors also discuss a broad range of otherinequality-constrained inference problems that do not fit well inthe contemplated unified framework, providing a meaningful way forreaders to comprehend methodological resolutions. Chapter coverage includes: Population means and isotonic regression Inequality-constrained tests on normal means Tests in general parametric models Likelihood and alternatives Analysis of categorical data Inference on monotone density function, unimodal densityfunction, shape constraints, and DMRL functions Bayesian perspectives, including Stein’s Paradox,shrinkage estimation, and decision theory

The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "For both applied and theoretical statisticians as well as investigators working in the many areas in which relevant use can be made of discriminant techniques, this monograph provides a modern, comprehensive, and systematic account of discriminant analysis, with the focus on the more recent advances in the field." –SciTech Book News ". . . a very useful source of information for any researcher working in discriminant analysis and pattern recognition." –Computational Statistics Discriminant Analysis and Statistical Pattern Recognition provides a systematic account of the subject. While the focus is on practical considerations, both theoretical and practical issues are explored. Among the advances covered are regularized discriminant analysis and bootstrap-based assessment of the performance of a sample-based discriminant rule, and extensions of discriminant analysis motivated by problems in statistical image analysis. The accompanying bibliography contains over 1,200 references.

Heavy-tailed distributions are typical for phenomena in complex multi-component systems such as biometry, economics, ecological systems, sociology, web access statistics, internet traffic, biblio-metrics, finance and business. The analysis of such distributions requires special methods of estimation due to their specific features. These are not only the slow decay to zero of the tail, but also the violation of Cramer’s condition, possible non-existence of some moments, and sparse observations in the tail of the distribution. The book focuses on the methods of statistical analysis of heavy-tailed independent identically distributed random variables by empirical samples of moderate sizes. It provides a detailed survey of classical results and recent developments in the theory of nonparametric estimation of the probability density function, the tail index, the hazard rate and the renewal function. Both asymptotical results, for example convergence rates of the estimates, and results for the samples of moderate sizes supported by Monte-Carlo investigation, are considered. The text is illustrated by the application of the considered methodologies to real data of web traffic measurements.