Released on 2021-10-25Categories Computers

Deep Learning for Personalized Healthcare Services

Deep Learning for Personalized Healthcare Services

Author: Vishal Jain

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 9783110708172

Category: Computers

Page: 325

View: 257

This book uncovers the stakes and possibilities involved in realising personalised healthcare services through efficient and effective deep learning algorithms, enabling the healthcare industry to develop meaningful and cost-effective services. This requires effective understanding, application and amalgamation of deep learning with several other computing technologies, such as machine learning, data mining, and natural language processing.
Released on 2021-10-25Categories Computers

Deep Learning for Personalized Healthcare Services

Deep Learning for Personalized Healthcare Services

Author: Vishal Jain

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 9783110708127

Category: Computers

Page: 268

View: 932

This book uncovers the stakes and possibilities involved in realising personalised healthcare services through efficient and effective deep learning algorithms, enabling the healthcare industry to develop meaningful and cost-effective services. This requires effective understanding, application and amalgamation of deep learning with several other computing technologies, such as machine learning, data mining, and natural language processing.
Released on 2020-02-07Categories Medical

Applications of Deep Learning and Big IoT on Personalized Healthcare Services

Applications of Deep Learning and Big IoT on Personalized Healthcare Services

Author: Wason, Ritika

Publisher: IGI Global

ISBN: 9781799821021

Category: Medical

Page: 248

View: 535

Healthcare is an industry that has seen great advancements in personalized services through big data analytics. Despite the application of smart devices in the medical field, the mass volume of data that is being generated makes it challenging to correctly diagnose patients. This has led to the implementation of precise algorithms that can manage large amounts of information and successfully use smart living in medical environments. Professionals worldwide need relevant research on how to successfully implement these smart technologies within their own personalized healthcare processes. Applications of Deep Learning and Big IoT on Personalized Healthcare Services is a pivotal reference source that provides a collection of innovative research on the analytical methods and applications of smart algorithms for the personalized treatment of patients. While highlighting topics including cognitive computing, natural language processing, and supply chain optimization, this book is ideally designed for network designers, analysts, technology specialists, medical professionals, developers, researchers, academicians, and post-graduate students seeking relevant information on smart developments within individualized healthcare.
Released on 2023-02-10Categories Technology & Engineering

Deep Learning for Healthcare Decision Making

Deep Learning for Healthcare Decision Making

Author: Vishal Jain

Publisher: CRC Press

ISBN: 9781000846522

Category: Technology & Engineering

Page: 311

View: 449

Health care today is known to suffer from siloed and fragmented data, delayed clinical communications, and disparate workflow tools due to the lack of interoperability caused by vendor-locked health care systems, lack of trust among data holders, and security/privacy concerns regarding data sharing. The health information industry is ready for big leaps and bounds in terms of growth and advancement. This book is an attempt to unveil the hidden potential of the enormous amount of health information and technology. Throughout this book, we attempt to combine numerous compelling views, guidelines, and frameworks to enable personalized health care service options through the successful application of deep learning frameworks. The progress of the health-care sector will be incremental as it learns from associations between data over time through the application of suitable AI, deep net frameworks, and patterns. The major challenge health care is facing is the effective and accurate learning of unstructured clinical data through the application of precise algorithms. Incorrect input data leading to erroneous outputs with false positives is intolerable in healthcare as patients’ lives are at stake. This book is written with the intent to uncover the stakes and possibilities involved in realizing personalized health-care services through efficient and effective deep learning algorithms. The specific focus of this book will be on the application of deep learning in any area of health care, including clinical trials, telemedicine, health records management, etc.
Released on Categories Artificial intelligence

Augmented Intelligence in Healthcare: A Pragmatic and Integrated Analysis

Augmented Intelligence in Healthcare: A Pragmatic and Integrated Analysis

Author: Sushruta Mishra

Publisher: Springer Nature

ISBN: 9789811910760

Category: Artificial intelligence

Page: 503

View: 396

The book discusses how augmented intelligence can increase the efficiency and speed of diagnosis in healthcare organizations. The concept of augmented intelligence can reflect the enhanced capabilities of human decision-making in clinical settings when augmented with computation systems and methods. It includes real-life case studies highlighting impact of augmented intelligence in health care. The book offers a guided tour of computational intelligence algorithms, architecture design, and applications of learning in healthcare challenges. It presents a variety of techniques designed to represent, enhance, and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. It also presents specific applications of augmented intelligence in health care, and architectural models and frameworks-based augmented solutions.
Released on 2022-02-22Categories Technology & Engineering

Machine Learning and Artificial Intelligence in Healthcare Systems

Machine Learning and Artificial Intelligence in Healthcare Systems

Author: Tawseef Ayoub Shaikh

Publisher: CRC Press

ISBN: 9781000830903

Category: Technology & Engineering

Page: 357

View: 953

This book provides applications of machine learning in healthcare systems and seeks to close the gap between engineering and medicine by combining design and problem-solving skills of engineering with health sciences to advance healthcare treatment. Machine Learning and Artificial Intelligence in Healthcare Systems: Tools and Techniques discusses AI-based smart paradigms for reliable prediction of infectious disease dynamics; such paradigms can help prevent disease transmission. It highlights the different aspects of using extended reality for diverse healthcare applications and aggregates the current state of research. The book offers intelligent models of the smart recommender system for personal well-being services and computer-aided drug discovery and design methods. Case studies illustrating the business processes that underlie the use of big data and health analytics to improve healthcare delivery are center stage. Innovative techniques used for extracting user social behavior (known as sentiment analysis for healthcare-related purposes) round out the diverse array of topics this reference book covers. Contributions from experts in the field, this book is useful to healthcare professionals, researchers, and students of industrial engineering, systems engineering, biomedical, computer science, electronics, and communications engineering.
Released on 2021-02-27Categories Technology & Engineering

Technical Advancements of Machine Learning in Healthcare

Technical Advancements of Machine Learning in Healthcare

Author: Hrudaya Kumar Tripathy

Publisher: Springer Nature

ISBN: 9789813346987

Category: Technology & Engineering

Page: 388

View: 888

This book focuses on various advanced technologies which integrate with machine learning to assist one of the most leading industries, healthcare. It presents recent research works based on machine learning approaches supported by medical and information communication technologies with the use of data and image analysis. The book presents insight about techniques which broadly deals in delivery of quality, accurate and affordable healthcare solutions by predictive, proactive and preventative methods. The book also explores the possible use of machine learning in enterprises, such as enhanced medical imaging/diagnostics, understanding medical data, drug discovery and development, robotic surgery and automation, radiation treatments, creating electronic smart records and outbreak prediction.
Released on 2022-05-18Categories Computers

Machine Learning and Deep Learning in Efficacy Improvement of Healthcare Systems

Machine Learning and Deep Learning in Efficacy Improvement of Healthcare Systems

Author: Om Prakash Jena

Publisher: CRC Press

ISBN: 9781000486827

Category: Computers

Page: 395

View: 296

The goal of medical informatics is to improve life expectancy, disease diagnosis and quality of life. Medical devices have revolutionized healthcare and have led to the modern age of machine learning, deep learning and Internet of Medical Things (IoMT) with their proliferation, mobility and agility. This book exposes different dimensions of applications for computational intelligence and explains its use in solving various biomedical and healthcare problems in the real world. This book describes the fundamental concepts of machine learning and deep learning techniques in a healthcare system. The aim of this book is to describe how deep learning methods are used to ensure high-quality data processing, medical image and signal analysis and improved healthcare applications. This book also explores different dimensions of computational intelligence applications and illustrates its use in the solution of assorted real-world biomedical and healthcare problems. Furthermore, it provides the healthcare sector with innovative advances in theory, analytical approaches, numerical simulation, statistical analysis, modelling, advanced deployment, case studies, analytical results, computational structuring and significant progress in the field of machine learning and deep learning in healthcare applications. FEATURES Explores different dimensions of computational intelligence applications and illustrates its use in the solution of assorted real-world biomedical and healthcare problems Provides guidance in developing intelligence-based diagnostic systems, efficient models and cost-effective machines Provides the latest research findings, solutions to the concerning issues and relevant theoretical frameworks in the area of machine learning and deep learning for healthcare systems Describes experiences and findings relating to protocol design, prototyping, experimental evaluation, real testbeds and empirical characterization of security and privacy interoperability issues in healthcare applications Explores and illustrates the current and future impacts of pandemics and mitigates risk in healthcare with advanced analytics This book is intended for students, researchers, professionals and policy makers working in the fields of public health and in the healthcare sector. Scientists and IT specialists will also find this book beneficial for research exposure and new ideas in the field of machine learning and deep learning.
Released on 2022-06-19Categories Computers

Edge-of-Things in Personalized Healthcare Support Systems

Edge-of-Things in Personalized Healthcare Support Systems

Author: Rajeswari Sridhar

Publisher: Academic Press

ISBN: 9780323907088

Category: Computers

Page: 437

View: 817

Edge-of-Things in Personalized Healthcare Support Systems discusses and explores state-of-the-art technology developments in storage and sharing of personal healthcare records in a secure manner that is globally distributed to incorporate best healthcare practices. The book presents research into the identification of specialization and expertise among healthcare professionals, the sharing of records over the cloud, access controls and rights of shared documents, document privacy, as well as edge computing techniques which help to identify causes and develop treatments for human disease. The book aims to advance personal healthcare, medical diagnosis, and treatment by applying IoT, cloud, and edge computing technologies in association with effective data analytics. Provides an in-depth analysis of how to model and design applications for state-of-the-art healthcare systems Discusses and explores the social impact of the intertwined use of emerging IT technologies for healthcare Covers system design and software building principles for healthcare using IoT, cloud, and edge computing technologies with the support of effective and efficient data analytics strategies Explores the latest algorithms using machine and deep learning in the areas of cloud, edge computing, IoT, and healthcare analytics
Released on 2022-01-28Categories Computers

Cognitive and Soft Computing Techniques for the Analysis of Healthcare Data

Cognitive and Soft Computing Techniques for the Analysis of Healthcare Data

Author: Akash Kumar Bhoi

Publisher: Academic Press

ISBN: 9780323903486

Category: Computers

Page: 294

View: 479

Cognitive and Soft Computing Techniques for the Analysis of Healthcare Data discusses the insight of data processing applications in various domains through soft computing techniques and enormous advancements in the field. The book focuses on the cross-disciplinary mechanisms and ground-breaking research ideas on novel techniques and data processing approaches in handling structured and unstructured healthcare data. It also gives insight into various information-processing models and many memories associated with it while processing the information for forecasting future trends and decision making. This book is an excellent resource for researchers and professionals who work in the Healthcare Industry, Data Science, and Machine learning. Focuses on data-centric operations in the Healthcare industry Provides the latest trends in healthcare data analytics and practical implementation outcomes of the proposed models Addresses real-time challenges and case studies in the Healthcare industry
Released on 2021-04-13Categories Computers

Machine Learning for Healthcare Applications

Machine Learning for Healthcare Applications

Author: Sachi Nandan Mohanty

Publisher: John Wiley & Sons

ISBN: 9781119791812

Category: Computers

Page: 418

View: 816

When considering the idea of using machine learning in healthcare, it is a Herculean task to present the entire gamut of information in the field of intelligent systems. It is, therefore the objective of this book to keep the presentation narrow and intensive. This approach is distinct from others in that it presents detailed computer simulations for all models presented with explanations of the program code. It includes unique and distinctive chapters on disease diagnosis, telemedicine, medical imaging, smart health monitoring, social media healthcare, and machine learning for COVID-19. These chapters help develop a clear understanding of the working of an algorithm while strengthening logical thinking. In this environment, answering a single question may require accessing several data sources and calling on sophisticated analysis tools. While data integration is a dynamic research area in the database community, the specific needs of research have led to the development of numerous middleware systems that provide seamless data access in a result-driven environment. Since this book is intended to be useful to a wide audience, students, researchers and scientists from both academia and industry may all benefit from this material. It contains a comprehensive description of issues for healthcare data management and an overview of existing systems, making it appropriate for introductory and instructional purposes. Prerequisites are minimal; the readers are expected to have basic knowledge of machine learning. This book is divided into 22 real-time innovative chapters which provide a variety of application examples in different domains. These chapters illustrate why traditional approaches often fail to meet customers’ needs. The presented approaches provide a comprehensive overview of current technology. Each of these chapters, which are written by the main inventors of the presented systems, specifies requirements and provides a description of both the chosen approach and its implementation. Because of the self-contained nature of these chapters, they may be read in any order. Each of the chapters use various technical terms which involve expertise in machine learning and computer science.
Released on 2022-02-18Categories Computers

Enterprise Digital Transformation

Enterprise Digital Transformation

Author: Sathyan Munirathinam

Publisher: CRC Press

ISBN: 9781000540543

Category: Computers

Page: 439

View: 905

Digital transformation (DT) has become a buzzword. Every industry segment across the globe is consciously jumping toward digital innovation and disruption to get ahead of their competitors. In other words, every aspect of running a business is being digitally empowered to reap all the benefits of the digital paradigm. All kinds of digitally enabled businesses across the globe are intrinsically capable of achieving bigger and better things for their constituents. Their consumers, clients, and customers will realize immense benefits with real digital transformation initiatives and implementations. The much-awaited business transformation can be easily and elegantly accomplished with a workable and winnable digital transformation strategy, plan, and execution. There are several enablers and accelerators for realizing the much-discussed digital transformation. There are a lot of digitization and digitalization technologies available to streamline and speed up the process of the required transformation. Industrial Internet of Things (IIoT) technologies in close association with decisive advancements in the artificial intelligence (AI) space can bring forth the desired transitions. The other prominent and dominant technologies toward forming digital organizations include cloud IT, edge/fog computing, real-time data analytics platforms, blockchain technology, digital twin paradigm, virtual and augmented reality (VR/AR) techniques, enterprise mobility, and 5G communication. These technological innovations are intrinsically competent and versatile enough to fulfill the varying requirements for establishing and sustaining digital enterprises. Enterprise Digital Transformation: Technology, Tools, and Use Cases features chapters on the evolving aspects of digital transformation and intelligence. It covers the unique competencies of digitally transformed enterprises, IIoT use cases, and applications. It explains promising technological solutions widely associated with digital innovation and disruption. The book focuses on setting up and sustaining smart factories that are fulfilling the Industry 4.0 vision that is realized through the IIoT and allied technologies.