Elementary Particles: Science, Technology, and Society is a comprehensive review of some important developments in science and technology in relation to the study of particle physics. The book covers topics such as particle physics - its theory and experimentation, apparatuses, arguments, and speculations; elementary particle interactions in astrophysics; and the interaction of particle research with chemistry. Topics also include the application of accelerated particles in biological research; possible uses of ionizing radiations in radiotherapy; and interactions between elementary particle research and engineering. The text is recommended for particle physicists who would like to know more about the applications of their expertise in the fields of astrophysics, chemistry, biology, medicine, and engineering.

This highly readable book uncovers the mysteries of the physics ofelementary particles for a broad audience. From the familiar notionsof atoms and molecules to the complex ideas of the grand unificationof all the basic forces, this book allows the interested lay public toappreciate the fascinating building blocks of matter that make up ouruniverse.

This book provides a comprehensive overview of modern particle physics accessible to anyone with a true passion for wanting to know how the universe works. We are introduced to the known particles of the world we live in. An elegant explanation of quantum mechanics and relativity paves the way for an understanding of the laws that govern particle physics. These laws are put into action in the world of accelerators, colliders and detectors found at institutions such as CERN and Fermilab that are in the forefront of technical innovation. Real world and theory meet using Feynman diagrams to solve the problems of infinities and deduce the need for the Higgs boson.Facts and Mysteries in Elementary Particle Physics offers an incredible insight from an eyewitness and participant in some of the greatest discoveries in 20th century science. From Einstein's theory of relativity to the elusive Higgs particle, this book will fascinate and educate anyone interested in the world of quarks, leptons and gauge theories.This book also contains many thumbnail sketches of particle physics personalities, including contemporaries as seen through the eyes of the author. Illustrated with pictures, these candid sketches present rare, perceptive views of the characters that populate the field.The Chapter on Particle Theory, in a pre-publication, was termed ?superbly lucid? by David Miller in Nature (Vol. 396, 17 Dec. 1998, p. 642).

This book has come into being as a result of scientific debates. And these debates have determined its structure. The first chapter is in the form of Socratic dialogues between a mathematician (MATH.), two physicists (pHYS. and EXP.) and a philosopher (PHIL.). However, although one of the authors is a theoretical physicist and the other a mathematician, the reader must not think that their opinions have been divided among the participants of the dialogues. We have tried to convey the inner tension of the topic under discussion and its openness. The attitudes of the participants reflect more the possible evaluations of the situation rather than the actual views of the authors. What is more, the subject "elementary particles" as dealt with in the 3 6 dialogue stretches over (2-3) 10 years of historical time and a space of 10 ±1 pages of scientific literature. For this reason, a complete survey of it is un achievable. But, of course, every researcher constructs his own history of his science and sees a certain list of its main pOints. We have attempted to float several possible pictures of this kind. Therefore the fact that Math and Phys talk about the history of element ary particles is not an attempt to present the scientific history of this realm of physics.

International Series of Monographs in Natural Philosophy, Volume 5: Weak Interaction of Elementary Particles focuses on the composition, properties, and reactions of elementary particles and high energies. The book first discusses elementary particles. Concerns include isotopic invariance in the Sakata model; conservation of fundamental particles; scheme of isomultiplets in the Sakata model; universal, unitary-symmetric strong interaction; and universal weak interaction. The text also focuses on spinors, amplitudes, and currents. Wave function, calculation of traces, five bilinear covariants, and electromagnetic interaction are explained. The text also discusses charge conjugation, inversion of coordinates, and time reversal; weak interaction between leptons; and leptonic decays of strongly interacting particles. The text also explains strangeness conserving leptonic decays. Conservation of the vector current; electromagnetic properties of protons and neutrons; vector coupling constant; and relationships between weak and electronic form factors are underscored. The book also discusses weak interaction at small distances. Intermediate bosons, local four-fermion interactions, and statement of the problem are explained. The text is a vital reference for readers interested in the composition, properties, and reactions of elementary particles and high energies.

Die Elementarteilchenphysik ist auf der ganzen Welt ein fester Bestandteil im Curriculum des Physikstudiums. Umso wichtiger ist es daher, dass auf diesem Gebiet bereits in den ersten Semestern ein solides Wissensfundament gelegt wird - nicht zuletzt als Vorbereitung auf die Themenbereiche Hochenergie- oder Kernphysik. In diesen Band ist die gesamte Lehrerfahrung von David Griffiths eingeflossen - eine begehrte "Ware", die in der Neuauflage nun auch ein Lösungsmanual präsentiert, das die zahlreichen Aufgaben und Fragen der Kapitelenden aufnimmt. Der Autor versteht es, sich den Themen in einer lebendigen Sprache zu nähern, die jedoch im Hinblick auf Präzision keine Kompromisse eingeht. So eröffnet der Band den Zugang zu den Theorien ebenso wie zu Modellen und Rechenoperationen. Das Werk wird von vielen Lehrenden empfohlen und kann bereits jetzt als Klassiker innerhalb der einführenden Werke zur Elementarteilchenphysik bezeichnet werden.

J. J. Sakurai's treatment of various elementary particle phenomena, is written for those not completely familiar with field theory who wish to gain insight into theoretical problems. Since the manuscript for his book was completed, a very important development has taken place in particle physics-the discovery of the p, w, and n mesons: in view of this development, the author has added a new section devoted exclusively to these new mesons and resonances. Originally published in 1964. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

This is the third edition of a text that is already well established as one of the standard undergraduate books on the subject of elementary particle physics. Professor Hughes has updated the whole text in line with current particle nomenclature and has added material to cover important new developments. There is also a completely new major chapter on particle physics and cosmology, an exciting subject that has become an area of increasing importance in recent years. In this field much can be learned from the way the subject has developed, and so, where this helps its understanding, a historical treatment is used. Unlike other texts on this subject, at all stages the author closely links theoretical developments to the relevant experimental measurements, providing a sound foundation to what might otherwise be a rather abstract subject. He also provides historical background where it will aid comprehension of the material.

The Physics of Elementary Particles details the physical principles that govern the behavior of elementary particles. The title focuses on discussing the theoretical concepts of elementary particles. The text first tackles the discovery and classification of the elementary particles, and then proceeds to covering the intrinsic properties of the particles. Chapter 3 talks about the preliminaries to a quantized field theory, while Chapter 4 deals with the quantum theory of non-interacting fields. Next, the selection details the symmetry properties of free fields. The next five chapters are dedicated to covering the interaction of fields. The remaining chapters discuss various forms of interaction, such as electromagnetic, weak, and strong. The book will be of great interest to physicists, particularly those who specialize in quantum mechanics.

Unitary Symmetry and Elementary Particles discusses the role of symmetry in elementary particle physics. The book reviews the theory of abstract groups and group representations including Eigenstates, cosets, conjugate classes, unitary vector spaces, unitary representations, multiplets, and conservation laws. The text also explains the concept of Young Diagrams or Young Tableaux to prove the basis functions of the unitary irreducible representations of the unitary group SU(n). The book defines Lie groups, Lie algebras, and gives some examples of these groups. The basis vectors of irreducible unitary representations of Lie groups constitute a multiplet, which according to Racah (1965) and Behrends et al. (1962) can have properties of weights. The text also explains the properties of Clebsch-Gordan coefficients and the Wigner-Eckart theorem. SU(3) multiplets have members classified as hadrons (strongly interacting particles), of which one characteristic show that the mass differences of these members have some regular properties. The Gell-Mann and Ne-eman postulate also explains another characteristic peculiar to known multiplets. The book describes the quark model, as well as, the uses of the variants of the quark model. This collection is suitable for researchers and scientists in the field of applied mathematics, nuclear physics, and quantum mechanics.

The first part of this two-part work is intended as an introduction to the fundamentals, while the second part discusses applications from the point of view of the researcher. Lively illustrations and informative tables, an overview at the beginning of each chapter and exercises with solutions make this book a valuable resource.

Old and New Problems in Elementary Particles provides information pertinent to elementary-particle physics. This book examines the types of problems facing high-energy physicists. Comprised of 20 chapters, this book starts with an overview of the fundamental properties of Dirac poles, with emphasis on the spin, the electric-dipole moment, and the mass. This text then examines the applications of supergain antenna, which is an interesting cautionary model against an oversimplified application of the notion of indeterminacy. Other chapters explain the uninhibited adoption of a uniform and natural experimental definition of resonance or particle with respect to hadrons. This book illustrates as well how insight into strong-interaction dynamics may be improved by a precise definition of the particle-resonance concept. The final chapter deals with the derivation of the Alder–Weisberger relation, which links the ratio of the two weak coupling constants of the nucleon with an integral over pion absorption cross-sections. Physicists and researchers will find this book useful.