This book gives an excellent and up-to-date overview on the convergence and joint progress in the fields of Generalized Functions and Fourier Analysis, notably in the core disciplines of pseudodifferential operators, microlocal analysis and time-frequency analysis. The volume is a collection of chapters addressing these fields, their interaction, their unifying concepts and their applications and is based on scientific activities related to the International Association for Generalized Functions (IAGF) and the ISAAC interest groups on Pseudo-Differential Operators (IGPDO) and on Generalized Functions (IGGF), notably on the longstanding collaboration of these groups within ISAAC.

This second edition of Generalized Functions has been strengthened in many ways. The already extensive set of examples has been expanded. Since the publication of the first edition, there has been tremendous growth in the subject and I have attempted to incorporate some of these new concepts. Accordingly, almost all the chapters have been revised. The bibliography has been enlarged considerably. Some of the material has been reorganized. For example, Chapters 12 and 13 of the first edition have been consolidated into Chapter 12 of this edition by a judicious process of elimination and addition of the subject matter. The new Chapter 13 explains the interplay between the theories of moments, asymptotics, and singular perturbations. Similarly, some sections of Chapter 15 have been revised and included in earlier chapters to improve the logical flow of ideas. However, two sections are retained. The section dealing with the application of the probability theory has been revised, and I am thankful to Professor Z.L. Crvenkovic for her help. The new material included in this chapter pertains to the modern topics of periodic distributions and microlocal theory. I have demonstrated through various examples that familiarity with the generalized functions is very helpful for students in physical sciences and technology. For instance, the reader will realize from Chapter 6 how the generalized functions have revolutionized the Fourier analysis which is being used extensively in many fields of scientific activity.

The generalized function is one of the important branches of mathematics which has enormous applications in practical fields. In particular its applications to the theory of distribution and signal processing are very much essential. In this computer age, information science plays a very important role and the Fourier transform is extremely significant in deciphering obscured information to be made understandable. The book contains six chapters and three appendices. Chapter 1 deals with the preliminary remarks of Fourier series from general point of view. Chapter 2 is concerned with the generalized functions and their Fourier transforms. Chapter 3 contains the Fourier transforms of particular generalized functions. Chapter 4 deals with the asymptotic estimation of Fourier transforms. Chapter 5 is devoted to the study of Fourier series as a series of generalized functions. Chapter 6 deals with the fast Fourier transforms.Appendix A contains the extended list of Fourier transform pairs.Appendix B illustrates the properties of impulse function.Appendix C contains an extended list of biographical references

Provides a more cohesive and sharply focused treatment of fundamental concepts and theoretical background material, with particular attention given to better delineating connections to varying applications Exposition driven by additional examples and exercises

Transform Analysis of Generalized Functions concentrates on finite parts of integrals, generalized functions and distributions. It gives a unified treatment of the distributional setting with transform analysis, i.e. Fourier, Laplace, Stieltjes, Mellin, Hankel and Bessel Series. Included are accounts of applications of the theory of integral transforms in a distributional setting to the solution of problems arising in mathematical physics. Information on distributional solutions of differential, partial differential equations and integral equations is conveniently collected here. The volume will serve as introductory and reference material for those interested in analysis, applications, physics and engineering.

Fourier analysis is one of the most useful and widely employed sets of tools for the engineer, the scientist, and the applied mathematician. As such, students and practitioners in these disciplines need a practical and mathematically solid introduction to its principles. They need straightforward verifications of its results and formulas, and they need clear indications of the limitations of those results and formulas. Principles of Fourier Analysis furnishes all this and more. It provides a comprehensive overview of the mathematical theory of Fourier analysis, including the development of Fourier series, "classical" Fourier transforms, generalized Fourier transforms and analysis, and the discrete theory. Much of the author's development is strikingly different from typical presentations. His approach to defining the classical Fourier transform results in a much cleaner, more coherent theory that leads naturally to a starting point for the generalized theory. He also introduces a new generalized theory based on the use of Gaussian test functions that yields an even more general -yet simpler -theory than usually presented. Principles of Fourier Analysis stimulates the appreciation and understanding of the fundamental concepts and serves both beginning students who have seen little or no Fourier analysis as well as the more advanced students who need a deeper understanding. Insightful, non-rigorous derivations motivate much of the material, and thought-provoking examples illustrate what can go wrong when formulas are misused. With clear, engaging exposition, readers develop the ability to intelligently handle the more sophisticated mathematics that Fourier analysis ultimately requires.

Generalized Functions, Volume 4: Applications of Harmonic Analysis is devoted to two general topics—developments in the theory of linear topological spaces and construction of harmonic analysis in n-dimensional Euclidean and infinite-dimensional spaces. This volume specifically discusses the bilinear functionals on countably normed spaces, Hilbert-Schmidt operators, and spectral analysis of operators in rigged Hilbert spaces. The general form of positive generalized functions on the space S, continuous positive-definite functions, and conditionally positive generalized functions are also deliberated. This publication likewise considers the mean of a generalized random process, multidimensional generalized random fields, simplest properties of cylinder sets, and definition of Gaussian measures. This book is beneficial to students, specialists, and researchers aiming to acquire knowledge of functional analysis.

This book provides a meaningful resource for applied mathematics through Fourier analysis. It develops a unified theory of discrete and continuous (univariate) Fourier analysis, the fast Fourier transform, and a powerful elementary theory of generalized functions and shows how these mathematical ideas can be used to study sampling theory, PDEs, probability, diffraction, musical tones, and wavelets. The book contains an unusually complete presentation of the Fourier transform calculus. It uses concepts from calculus to present an elementary theory of generalized functions. FT calculus and generalized functions are then used to study the wave equation, diffusion equation, and diffraction equation. Real-world applications of Fourier analysis are described in the chapter on musical tones. A valuable reference on Fourier analysis for a variety of students and scientific professionals, including mathematicians, physicists, chemists, geologists, electrical engineers, mechanical engineers, and others.