Biocatalysis has become an essential tool in the chemical industry and is the core of industrial biotechnology, also known as white biotechnology, making use of biocatalysts in terms of enzymes or whole cells in chemical processes as an alternative to chemical catalysts. This shift can be seen in the many areas of daily life where biocatalysts—with their environmentally friendly properties—are currently employed. Drivers are the big societal challenges resulting from concerns about the global climate change and the need for an assured energy supply. Modern biocatalysis relies to a large extent on the tremendous advances in the so-called omics techniques and the structural elucidation of biomolecules, which have led to synthetic biology and metabolic engineering as new research fields with high application potential for the rational design of enzymes and microbial production strains. In this book, renowned scientists discuss the actual developments in these research fields together with a variety of application-oriented topics.
Until now, no comprehensive handbook on industrial biocatalysis has been available. Soliciting chapters on virtually every aspect of biocatalysis from international experts most actively researching the field, the Handbook of Industrial Biocatalysis fills this need. The handbook is divided into three sections based on types of substrates. T
Because enzyme-catalyzed reactions exhibit higher enantioselectivity, regioselectivity, substrate specificity, and stability, they require mild conditions to react while prompting higher reaction efficiency and product yields. Biocatalysis in the Pharmaceutical and Biotechnology Industries examines the use of catalysts to produce fine chemicals and chiral intermediates in a variety of pharmaceutical, agrochemical, and other biotechnological applications. Written by internationally recognized scientists in biocatalysis, the authors analyze the synthesis of chiral intermediates for over 60 brand-name pharmaceuticals for a wide range of drug therapies and treatments. From starting material to product, the chapters offer detailed mechanisms that show chiral intermediates and other by-products for each reaction—including hydrolytic, acylation, halogenation, esterification, dehalogenation, oxidation-reduction, oxygenation, hydroxylation, deamination, transamination, and C–C, C–N, C–O bonds formation. Cutting-edge topics include advanced methodologies for gene shuffling and directed evolution of biocatalysts; the custom engineering of enzymes; the use of microbial cells and isolated biocatalysts; the use of renewable starting materials; and generating novel molecules by combinatorial biocatalysis and high-throughput screening. Focusing on industrial applications, the book also considers factors such as bulk processes, instrumentation, solvent selection, and techniques for catalyst immobilization, reusability, and yield optimization throughout. Biocatalysis in the Pharmaceutical and Biotechnology Industries showcases the practical advantages and methodologies for using biocatalysts to develop and produce chiral pharmaceuticals and fine chemicals.
Biocatalysis is rapidly evolving into a key technology for the discovery and production of chemicals, especially in the pharmaceutical industry, where high yielding chemo-, regio-, and enantioselective reactions are critical. Taking the latest breakthroughs in genomics and proteomics into consideration, Biocatalysis for the Pharmaceutical Industry concisely yet comprehensively discusses the modern application of biocatalysis to drug discovery, development, and manufacturing. Written by a team of leading experts, the book offers deep insight into this cutting edge field. Covers a wide range of topics in a systematic manner with an emphasis on industrial applications Provides a thorough introduction to the latest biocatalysts, modern expression hosts, state-of-the-art directed evolution, high throughput screening, and bioprocess engineering Addresses frontier subjects such as emerging enzymes, metabolite profiling, combinatorial biosynthesis, metabolic engineering, and autonomous enzymes for the synthesis and development of chiral molecules, drug metabolites, and semi-synthetic medicinal compounds and natural product analogs Highlights the impact of biocatalysis on green chemistry Contains numerous graphics to illustrate concepts and techniques Biocatalysis for the Pharmaceutical Industry is an essential resource for scientists, engineers, and R&D policy makers in the fine chemical, pharmaceutical, and biotech industries. It is also an invaluable tool for academic researchers and advanced students of organic and materials synthesis, chemical biology, and medicinal chemistry.
The whole range of biocatalysis, from a firm grounding in theoretical concepts to in-depth coverage of practical applications and future perspectives. The book not only covers reactions, products and processes with and from biological catalysts, but also the process of designing and improving such biocatalysts. One unique feature is that the fields of chemistry, biology and bioengineering receive equal attention, thus addressing practitioners and students from all three areas.
Implementing biocatalytic strategies in an industrial setting is a challenging task, especially when commercial scale necessitates a balance between industrial need and economic viability. With invited contributions from a wide range of chemical and pharmaceutical companies, this book bridges the gap between academia and industry. Contributors discuss current processes, types of biocatalysts and improvements, industrial motivation and the key aspects needed for economic success. Focussing on industry related issues, this book will be a useful tool for future research by both practitioners and academics.
This book describes the essential steps in the development of biocatalytic processes from concept to completion. It is a carefully integrated text which combines the fundamentals of biocatalysis with technological experience and in-depth commercial case studies. The book starts with an introductory look at the characteristics and present applications of biocatalysts, followed by more detailed overviews of these areas.
This book was written with the purpose of providing a sound basis for the design of enzymatic reactions based on kinetic principles, but also to give an updated vision of the potentials and limitations of biocatalysis, especially with respect to recent app- cations in processes of organic synthesis. The ?rst ?ve chapters are structured in the form of a textbook, going from the basic principles of enzyme structure and fu- tion to reactor design for homogeneous systems with soluble enzymes and hete- geneous systems with immobilized enzymes. The last chapter of the book is divided into six sections that represent illustrative case studies of biocatalytic processes of industrial relevance or potential, written by experts in the respective ?elds. We sincerely hope that this book will represent an element in the toolbox of gr- uate students in applied biology and chemical and biochemical engineering and also of undergraduate students with formal training in organic chemistry, biochemistry, thermodynamics and chemical reaction kinetics. Beyond that, the book pretends also to illustrate the potential of biocatalytic processes with case studies in the ?eld of organic synthesis, which we hope will be of interest for the academia and prof- sionals involved in R&D&I. If some of our young readers are encouraged to engage or persevere in their work in biocatalysis this will certainly be our more precious reward.
Publisher: American Society for Microbiology Press
ISBN: 9781555815127
Category: Medical
Page: 1982
View: 567
A rich array of methods and discussions of productive microbial processes. • Reviews of the newest techniques, approaches, and options in the use of microorganisms and other cell culture systems for the manufacture of pharmaceuticals, industrial enzymes and proteins, foods and beverages, fuels and fine chemicals, and other products. • Focuses on the latest advances and findings on the current state of the art and science and features a new section on the microbial production of biofuels and fine chemicals, as well as a stronger emphasis on mammalian cell culture methods. • Covers new methods that enhance the capacity of microbes used for a wide range of purposes, from winemaking to pharmaceuticals to bioremediation, at volumes from micro- to industrial scale.
This book describes recent progress in enzyme-driven green syntheses of industrially important molecules. The first three introductory chapters overview recent technological advances in enzymes and cell-based transformations, and green chemistry metrics for synthetic efficiency. The remaining chapters are directed to case studies in biotechnological production of pharmaceuticals (small molecules, natural products and biologics), flavors, fragrance and cosmetics, fine chemicals, value-added chemicals from glucose and biomass, and polymeric materials. The book is aimed to facilitate the industrial applications of this powerful and emerging green technology, and catalyze the advancement of the technology itself.
In this Completely Revised and Extended Edition with a significantly enhanced content, all Chapters have been updated considering relevant literature and recent developments until 2016 together with application oriented examples with a focus on Industrial Biocatalysis. Newly treated topics comprise among others systems metabolic engineering approaches, metagenome screening, new tools for pathway engineering, and de-novo computational design as actual research areas in biocatalysis. Information about different aspects of RNA technologies, and completely new Chapters on 'Fluorescent Proteins' and 'Biocatalysis and Nanotechnology' are also included.
This reference book originates from the interdisciplinary research cooperation between academia and industry. In three distinct parts, latest results from basic research on stable enzymes are explained and brought into context with possible industrial applications. Downstream processing technology as well as biocatalytic and biotechnological production processes from global players display the enormous potential of biocatalysts. Application of "extreme" reaction conditions (i.e. unconventional, such as high temperature, pressure, and pH value) - biocatalysts are normally used within a well defined process window - leads to novel synthetic effects. Both novel enzyme systems and the synthetic routes in which they can be applied are made accessible to the reader. In addition, the complementary innovative process technology under unconventional conditions is highlighted by latest examples from biotech industry.