Anyone with an interest in learning about the mathematical modeling of prices of financial derivatives such as bonds, futures, and options can start with this book, whereby the only mathematical prerequisite is multivariable calculus. The necessary theory of interest, statistical, stochastic, and differential equations are developed in their respective chapters, with the goal of making this introductory text as self-contained as possible.In this edition, the chapters on hedging portfolios and extensions of the Black-Scholes model have been expanded. The chapter on optimizing portfolios has been completely re-written to focus on the development of the Capital Asset Pricing Model. The binomial model due to Cox-Ross-Rubinstein has been enlarged into a standalone chapter illustrating the wide-ranging utility of the binomial model for numerically estimating option prices. There is a completely new chapter on the pricing of exotic options. The appendix now features linear algebra with sufficient background material to support a more rigorous development of the Arbitrage Theorem.The new edition has more than doubled the number of exercises compared to the previous edition and now contains over 700 exercises. Thus, students completing the book will gain a deeper understanding of the development of modern financial mathematics.

This textbook aims to fill the gap between those that offer a theoretical treatment without many applications and those that present and apply formulas without appropriately deriving them. The balance achieved will give readers a fundamental understanding of key financial ideas and tools that form the basis for building realistic models, including those that may become proprietary. Numerous carefully chosen examples and exercises reinforce the student’s conceptual understanding and facility with applications. The exercises are divided into conceptual, application-based, and theoretical problems, which probe the material deeper. The book is aimed toward advanced undergraduates and first-year graduate students who are new to finance or want a more rigorous treatment of the mathematical models used within. While no background in finance is assumed, prerequisite math courses include multivariable calculus, probability, and linear algebra. The authors introduce additional mathematical tools as needed. The entire textbook is appropriate for a single year-long course on introductory mathematical finance. The self-contained design of the text allows for instructor flexibility in topics courses and those focusing on financial derivatives. Moreover, the text is useful for mathematicians, physicists, and engineers who want to learn finance via an approach that builds their financial intuition and is explicit about model building, as well as business school students who want a treatment of finance that is deeper but not overly theoretical.

This book’s primary objective is to educate aspiring finance professionals about mathematics and computation in the context of financial derivatives. The authors offer a balance of traditional coverage and technology to fill the void between highly mathematical books and broad finance books. The focus of this book is twofold: To partner mathematics with corresponding intuition rather than diving so deeply into the mathematics that the material is inaccessible to many readers. To build reader intuition, understanding and confidence through three types of computer applications that help the reader understand the mathematics of the models. Unlike many books on financial derivatives requiring stochastic calculus, this book presents the fundamental theories based on only undergraduate probability knowledge. A key feature of this book is its focus on applying models in three programming languages –R, Mathematica and EXCEL. Each of the three approaches offers unique advantages. The computer applications are carefully introduced and require little prior programming background. The financial derivative models that are included in this book are virtually identical to those covered in the top financial professional certificate programs in finance. The overlap of financial models between these programs and this book is broad and deep.

Introduction to Financial Mathematics is ideal for an introductory undergraduate course. Unlike most textbooks aimed at more advanced courses, the text motivates students through a discussion of personal finances and portfolio management. The author then goes on to cover valuation of financial derivatives in discrete time, using all of closed form, recursive, and simulation methods. The text covers nearly all of the syllabus topics of the Financial Mathematics Actuarial examination, providing students with the foundation they require for future studies and throughout their careers. It begins by covering standard material on the mathematics of interest, including compound interest, present value, annuities, loans, several versions of the rate of return on an investment, and interest in continuous time. The text explains how to value bonds at their issue dates, at coupon times, between coupon times, and in cases where the bonds are terminated early. Next, it supplies a rapid-fire overview of the main ideas and techniques of discrete probability, including sample spaces and probability measures, random variables and distributions, expectation, conditional probability, and independence. The author introduces the basic terminology of stocks and stock trading. He also explains how to derive the rate of return on a portfolio and how to use the idea of risk aversion to model the investor tradeoff between risk and return. The text also discusses the estimation of parameters of asset models from real data. The text closes with a detailed discussion of how to value financial derivatives using anti-arbitrage assumptions. The one-step and multi-step cases are covered, and exotic options such as barrier options are also introduced, to which simulation methods are applied. Many of the examples in the book involve numerical solution of complicated non-linear equations; others ask students to produce algorithms which beg to be implemented as programs. For maximum flexibility, the author has produced the text without adhering to any particular computational platform. A digital version of this text is also available in the form of Mathematica notebooks that contain additional content.

Introduction to Financial Mathematics: Option Valuation, Second Edition is a well-rounded primer to the mathematics and models used in the valuation of financial derivatives. The book consists of fifteen chapters, the first ten of which develop option valuation techniques in discrete time, the last five describing the theory in continuous time. The first half of the textbook develops basic finance and probability. The author then treats the binomial model as the primary example of discrete-time option valuation. The final part of the textbook examines the Black-Scholes model. The book is written to provide a straightforward account of the principles of option pricing and examines these principles in detail using standard discrete and stochastic calculus models. Additionally, the second edition has new exercises and examples, and includes many tables and graphs generated by over 30 MS Excel VBA modules available on the author’s webpage https://home.gwu.edu/~hdj/.

This textbook provides an introduction to financial mathematics and financial engineering for undergraduate students who have completed a three- or four-semester sequence of calculus courses. It introduces the theory of interest, discrete and continuous random variables and probability, stochastic processes, linear programming, the Fundamental Theorem of Finance, option pricing, hedging, and portfolio optimization. This third edition expands on the second by including a new chapter on the extensions of the Black-Scholes model of option pricing and a greater number of exercises at the end of each chapter. More background material and exercises added, with solutions provided to the other chapters, allowing the textbook to better stand alone as an introduction to financial mathematics. The reader progresses from a solid grounding in multivariable calculus through a derivation of the Black-Scholes equation, its solution, properties, and applications. The text attempts to be as self-contained as possible without relying on advanced mathematical and statistical topics. The material presented in this book will adequately prepare the reader for graduate-level study in mathematical finance.

Anyone with an interest in learning about the mathematical modeling of prices of financial derivatives such as bonds, futures, and options can start with this book, whereby the only mathematical prerequisite is multivariable calculus. The necessary theory of interest, statistical, stochastic, and differential equations are developed in their respective chapters, with the goal of making this introductory text as self-contained as possible.In this edition, the chapters on hedging portfolios and extensions of the Black-Scholes model have been expanded. The chapter on optimizing portfolios has been completely re-written to focus on the development of the Capital Asset Pricing Model. The binomial model due to Cox-Ross-Rubinstein has been enlarged into a standalone chapter illustrating the wide-ranging utility of the binomial model for numerically estimating option prices. There is a completely new chapter on the pricing of exotic options. The appendix now features linear algebra with sufficient background material to support a more rigorous development of the Arbitrage Theorem.The new edition has more than doubled the number of exercises compared to the previous edition and now contains over 700 exercises. Thus, students completing the book will gain a deeper understanding of the development of modern financial mathematics.

This textbook provides an introduction to financial mathematics and financial engineering for undergraduate students who have completed a three- or four-semester sequence of calculus courses. It introduces the Theory of Interest, discrete and continuous random variables and probability, stochastic processes, linear programming, the Fundamental Theorem of Finance, option pricing, hedging, and portfolio optimization. The reader progresses from a solid grounding in multi-variable calculus through a derivation of the Black–Scholes equation, its solution, properties, and applications.

This book is an elementary introduction to the basic concepts of financial mathematics with a central focus on discrete models and an aim to demonstrate simple, but widely used, financial derivatives for managing market risks. Only a basic knowledge of probability, real analysis, ordinary differential equations, linear algebra and some common sense are required to understand the concepts considered in this book. Financial mathematics is an application of advanced mathematical and statistical methods to financial management and markets, with a main objective of quantifying and hedging risks. Since the book aims to present the basics of financial mathematics to the reader, only essential elements of probability and stochastic analysis are given to explain ideas concerning derivative pricing and hedging. To keep the reader intrigued and motivated, the book has a ‘sandwich’ structure: probability and stochastics are given in situ where mathematics can be readily illustrated by application to finance. The first part of the book introduces one of the main principles in finance — ‘no arbitrage pricing’. It also introduces main financial instruments such as forward and futures contracts, bonds and swaps, and options. The second part deals with pricing and hedging of European- and American-type options in the discrete-time setting. In addition, the concept of complete and incomplete markets is discussed. Elementary probability is briefly revised and discrete-time discrete-space stochastic processes used in financial modelling are considered. The third part introduces the Wiener process, Ito integrals and stochastic differential equations, but its main focus is the famous Black–Scholes formula for pricing European options. Some guidance for further study within this exciting and rapidly changing field is given in the concluding chapter. There are approximately 100 exercises interspersed throughout the book, and solutions for most problems are provided in the appendices.

An innovative textbook for use in advanced undergraduate and graduate courses; accessible to students in financial mathematics, financial engineering and economics. Introduction to the Economics and Mathematics of Financial Markets fills the longstanding need for an accessible yet serious textbook treatment of financial economics. The book provides a rigorous overview of the subject, while its flexible presentation makes it suitable for use with different levels of undergraduate and graduate students. Each chapter presents mathematical models of financial problems at three different degrees of sophistication: single-period, multi-period, and continuous-time. The single-period and multi-period models require only basic calculus and an introductory probability/statistics course, while an advanced undergraduate course in probability is helpful in understanding the continuous-time models. In this way, the material is given complete coverage at different levels; the less advanced student can stop before the more sophisticated mathematics and still be able to grasp the general principles of financial economics. The book is divided into three parts. The first part provides an introduction to basic securities and financial market organization, the concept of interest rates, the main mathematical models, and quantitative ways to measure risks and rewards. The second part treats option pricing and hedging; here and throughout the book, the authors emphasize the Martingale or probabilistic approach. Finally, the third part examines equilibrium models—a subject often neglected by other texts in financial mathematics, but included here because of the qualitative insight it offers into the behavior of market participants and pricing.

As with the first edition, Mathematics for Finance: An Introduction to Financial Engineering combines financial motivation with mathematical style. Assuming only basic knowledge of probability and calculus, it presents three major areas of mathematical finance, namely Option pricing based on the no-arbitrage principle in discrete and continuous time setting, Markowitz portfolio optimisation and Capital Asset Pricing Model, and basic stochastic interest rate models in discrete setting. From the reviews of the first edition: ”This text is an excellent introduction to Mathematical Finance. Armed with a knowledge of basic calculus and probability a student can use this book to learn about derivatives, interest rates and their term structure and portfolio management.”(Zentralblatt MATH) ”Given these basic tools, it is surprising how high a level of sophistication the authors achieve, covering such topics as arbitrage-free valuation, binomial trees, and risk-neutral valuation.” (www.riskbook.com) ”The reviewer can only congratulate the authors with successful completion of a difficult task of writing a useful textbook on a traditionally hard topic.” (K. Borovkov, The Australian Mathematical Society Gazette, Vol. 31 (4), 2004)

The book has been tested and refined through years of classroom teaching experience. With an abundance of examples, problems, and fully worked out solutions, the text introduces the financial theory and relevant mathematical methods in a mathematically rigorous yet engaging way. This textbook provides complete coverage of continuous-time financial models that form the cornerstones of financial derivative pricing theory. Unlike similar texts in the field, this one presents multiple problem-solving approaches, linking related comprehensive techniques for pricing different types of financial derivatives. Key features: In-depth coverage of continuous-time theory and methodology Numerous, fully worked out examples and exercises in every chapter Mathematically rigorous and consistent, yet bridging various basic and more advanced concepts Judicious balance of financial theory and mathematical methods Guide to Material This revision contains: Almost 150 pages worth of new material in all chapters A appendix on probability theory An expanded set of solved problems and additional exercises Answers to all exercises This book is a comprehensive, self-contained, and unified treatment of the main theory and application of mathematical methods behind modern-day financial mathematics. The text complements Financial Mathematics: A Comprehensive Treatment in Discrete Time, by the same authors, also published by CRC Press.