In recent years several new classes of matrices have been discovered and their structure exploited to design fast and accurate algorithms. In this new reference work, Raf Vandebril, Marc Van Barel, and Nicola Mastronardi present the first comprehensive overview of the mathematical and numerical properties of the family's newest member: semiseparable matrices. The text is divided into three parts. The first provides some historical background and introduces concepts and definitions concerning structured rank matrices. The second offers some traditional methods for solving systems of equations involving the basic subclasses of these matrices. The third section discusses structured rank matrices in a broader context, presents algorithms for solving higher-order structured rank matrices, and examines hybrid variants such as block quasiseparable matrices. An accessible case study clearly demonstrates the general topic of each new concept discussed. Many of the routines featured are implemented in Matlab and can be downloaded from the Web for further exploration.

Random Matrices gives a coherent and detailed description of analytical methods devised to study random matrices. These methods are critical to the understanding of various fields in in mathematics and mathematical physics, such as nuclear excitations, ultrasonic resonances of structural materials, chaotic systems, the zeros of the Riemann and other zeta functions. More generally they apply to the characteristic energies of any sufficiently complicated system and which have found, since the publication of the second edition, many new applications in active research areas such as quantum gravity, traffic and communications networks or stock movement in the financial markets. This revised and enlarged third edition reflects the latest developements in the field and convey a greater experience with results previously formulated. For example, the theory of skew-orthogoanl and bi-orthogonal polynomials, parallel to that of the widely known and used orthogonal polynomials, is explained here for the first time. Presentation of many new results in one place for the first time. First time coverage of skew-orthogonal and bi-orthogonal polynomials and their use in the evaluation of some multiple integrals. Fredholm determinants and Painlevé equations. The three Gaussian ensembles (unitary, orthogonal, and symplectic); their n-point correlations, spacing probabilities. Fredholm determinants and inverse scattering theory. Probability densities of random determinants.

Applying functional analysis and operator theory to some concrete asymptotic problems of linear algebra, this book contains results on the stability of projection methods, deals with asymptotic inverses and Moore-Penrose inversion of large Toeplitz matrices, and embarks on the asymptotic behaviour of the norms of inverses, the pseudospectra, the singular values, and the eigenvalues of large Toeplitz matrices. The approach is heavily based on Banach algebra techniques and nicely demonstrates the usefulness of C*-algebras and local principles in numerical analysis, including classical topics as well as results and methods from the last few years. Though employing modern tools, the exposition is elementary and points out the mathematical background behind some interesting phenomena encountered with large Toeplitz matrices. Accessible to readers with basic knowledge in functional analysis, the book addresses graduates, teachers, and researchers and should be of interest to everyone who has to deal with infinite matrices (Toeplitz or not) and their large truncations.

This book introduces for the first time the notion of fuzzy interval matrices, fuzzy interval bimatrices, fuzzy interval n-matrices, neutrosophic interval matrices, neutrosophic interval bimatrices, neutrosophic interval n-matrices, fuzzy neutrosophic interval matrices and fuzzy neutrosophic interval n-matrices, where n >= 2.These new notions find their applications in FCInM, FRInM, FBAItM, NCInM, NCRInM and NRInM models, where n>=1.It is important to mention that these Fuzzy interval n-matrices and Fuzzy neutrosophic interval n-matrices will find their usage in Leontief economic models and Markov chains that have lots of industrial applications.

In Hadamard Matrices and Their Applications, K. J. Horadam provides the first unified account of cocyclic Hadamard matrices and their applications in signal and data processing. This original work is based on the development of an algebraic link between Hadamard matrices and the cohomology of finite groups that was discovered fifteen years ago. The book translates physical applications into terms a pure mathematician will appreciate, and theoretical structures into ones an applied mathematician, computer scientist, or communications engineer can adapt and use. The first half of the book explains the state of our knowledge of Hadamard matrices and two important generalizations: matrices with group entries and multidimensional Hadamard arrays. It focuses on their applications in engineering and computer science, as signal transforms, spreading sequences, error-correcting codes, and cryptographic primitives. The book's second half presents the new results in cocyclic Hadamard matrices and their applications. Full expression of this theory has been realized only recently, in the Five-fold Constellation. This identifies cocyclic generalized Hadamard matrices with particular "stars" in four other areas of mathematics and engineering: group cohomology, incidence structures, combinatorics, and signal correlation. Pointing the way to possible new developments in a field ripe for further research, this book formulates and discusses ninety open questions.

On the surface, matrix theory and graph theory seem like very different branches of mathematics. However, adjacency, Laplacian, and incidence matrices are commonly used to represent graphs, and many properties of matrices can give us useful information about the structure of graphs.Applications of Combinatorial Matrix Theory to Laplacian Matrices o

Large dimensional random matrices (LDRM) with specific patterns arise in econometrics, computer science, mathematics, physics, and statistics. This book provides an easy initiation to LDRM. Through a unified approach, we investigate the existence and properties of the limiting spectral distribution (LSD) of different patterned random matrices as the dimension grows. The main ingredients are the method of moments and normal approximation with rudimentary combinatorics for support. Some elementary results from matrix theory are also used. By stretching the moment arguments, we also have a brush with the intriguing but difficult concepts of joint convergence of sequences of random matrices and its ramifications. This book covers the Wigner matrix, the sample covariance matrix, the Toeplitz matrix, the Hankel matrix, the sample autocovariance matrix and the k-Circulant matrices. Quick and simple proofs of their LSDs are provided and it is shown how the semi-circle law and the March enko-Pastur law arise as the LSDs of the first two matrices. Extending the basic approach, we also establish interesting limits for some triangular matrices, band matrices, balanced matrices, and the sample autocovariance matrix. We also study the joint convergence of several patterned matrices, and show that independent Wigner matrices converge jointly and are asymptotically free of other patterned matrices. Arup Bose is a Professor at the Indian Statistical Institute, Kolkata, India. He is a distinguished researcher in Mathematical Statistics and has been working in high-dimensional random matrices for the last fifteen years. He has been the Editor of Sankyhā for several years and has been on the editorial board of several other journals. He is a Fellow of the Institute of Mathematical Statistics, USA and all three national science academies of India, as well as the recipient of the S.S. Bhatnagar Award and the C.R. Rao Award. His forthcoming books are the monograph, Large Covariance and Autocovariance Matrices (with Monika Bhattacharjee), to be published by Chapman & Hall/CRC Press, and a graduate text, U-statistics, M-estimates and Resampling (with Snigdhansu Chatterjee), to be published by Hindustan Book Agency.

A real matrix is positive semidefinite if it can be decomposed as A=BBT. In some applications the matrix B has to be elementwise nonnegative. If such a matrix exists, A is called completely positive. The smallest number of columns of a nonnegative matrix B such that A=BBT is known as the cp-rank of A. This invaluable book focuses on necessary conditions and sufficient conditions for complete positivity, as well as bounds for the cp-rank. The methods are combinatorial, geometric and algebraic. The required background on nonnegative matrices, cones, graphs and Schur complements is outlined.

This text covers in detail recent developments in the field of stochastic processes and Random Matrix Theory. Matrix models have been playing an important role in theoretical physics for a long time and are currently also a very active domain of research in mathematics.