The traditional debate among philosophers of mathematics is whether there is an external mathematical reality, something out there to be discovered, or whether mathematics is the product of the human mind. This provocative book, now available in a revised and expanded paperback edition, goes beyond foundationalist questions to offer what has been called a "postmodern" assessment of the philosophy of mathematics--one that addresses issues of theoretical importance in terms of mathematical experience. By bringing together essays of leading philosophers, mathematicians, logicians, and computer scientists, Thomas Tymoczko reveals an evolving effort to account for the nature of mathematics in relation to other human activities. These accounts include such topics as the history of mathematics as a field of study, predictions about how computers will influence the future organization of mathematics, and what processes a proof undergoes before it reaches publishable form. This expanded edition now contains essays by Penelope Maddy, Michael D. Resnik, and William P. Thurston that address the nature of mathematical proofs. The editor has provided a new afterword and a supplemental bibliography of recent work.

This volume sheds light on still unexplored issues and raises new questions in the main areas addressed by the philosophy of science. Bringing together selected papers from three main events, the book presents the most advanced scientific results in the field and suggests innovative lines for further investigation. It explores how discussions on several notions of the philosophy of science can help different scientific disciplines in learning from each other. Finally, it focuses on the relationship between Cambridge and Vienna in twentieth century philosophy of science. The areas examined in the book are: formal methods, the philosophy of the natural and life sciences, the cultural and social sciences, the physical sciences and the history of the philosophy of science.

In recent years there has been a flowering of work on economic methodology. However there is no longer any consensus about which direction this should take or, indeed, even what the role and content of economic methodology should be. This book reflects this diversity. Its contributors are responsible for the major developments in this field and together they give an account of all the major positions which currently prevail in economic methodology. These include attempts to rehabilitate the 'falsification' of Kuhn, Lakatos and Popper, sociology of knowledge approaches, different forms of realism, contributions from the 'rhetoric' project and other perspectives which view the economy as a text.

This book comprises five parts. The first three contain ten historical essays on important topics: number theory, calculus/analysis, and proof, respectively. Part four deals with several historically oriented courses, and Part five provides biographies of five mathematicians who played major roles in the historical events described in the first four parts of the work. Excursions in the History of Mathematics was written with several goals in mind: to arouse mathematics teachers’ interest in the history of their subject; to encourage mathematics teachers with at least some knowledge of the history of mathematics to offer courses with a strong historical component; and to provide an historical perspective on a number of basic topics taught in mathematics courses.

There is an urgent need in philosophy of mathematics for new approaches which pay closer attention to mathematical practice. This book will blaze the trail: it offers philosophical analyses of important characteristics of contemporary mathematics and of many aspects of mathematical activity which escape purely formal logical treatment.

This survey provides a brief and selective overview of research in the philosophy of mathematics education. It asks what makes up the philosophy of mathematics education, what it means, what questions it asks and answers, and what is its overall importance and use? It provides overviews of critical mathematics education, and the most relevant modern movements in the philosophy of mathematics. A case study is provided of an emerging research tradition in one country. This is the Hermeneutic strand of research in the philosophy of mathematics education in Brazil. This illustrates one orientation towards research inquiry in the philosophy of mathematics education. It is part of a broader practice of ‘philosophical archaeology’: the uncovering of hidden assumptions and buried ideologies within the concepts and methods of research and practice in mathematics education. An extensive bibliography is also included.

Volume III of Research in Collegiate Mathematics Education (RCME) presents state-of-the-art research on understanding, teaching, and learning mathematics at the post-secondary level. This volume contains information on methodology and research concentrating on these areas of student learning: Problem solving - included here are three different articles analyzing aspects of Schoenfeld's undergraduate problem-solving instruction. The articles provide new detail and insight on a well-known and widely discussed course taught by Schoenfeld for many years. Understanding concepts - these articles feature a variety of methods used to examine students' understanding of the concept of a function and selected concepts from calculus. The conclusions presented offer unique and interesting perspectives on how students learn concepts.Understanding proofs - this section provides insight from a distinctly psychological framework. Researchers examine how existing practices can foster certain weaknesses. They offer ways to recognize and interpret students' proof behaviors and suggest alternative practices and curricula to build more powerful schemes. The section concludes with a focused look at using diagrams in the course of proving a statement.

The first volume in this new series explores, through extensive co-operation, new ways of achieving the integration of science in all its diversity. The book offers essays from important and influential philosophers in contemporary philosophy, discussing a range of topics from philosophy of science to epistemology, philosophy of logic and game theoretical approaches. It will be of interest to philosophers, computer scientists and all others interested in the scientific rationality.

This truly philosophical book takes us back to fundamentals - the sheer experience of proof, and the enigmatic relation of mathematics to nature. It asks unexpected questions, such as 'what makes mathematics mathematics?', 'where did proof come from and how did it evolve?', and 'how did the distinction between pure and applied mathematics come into being?' In a wide-ranging discussion that is both immersed in the past and unusually attuned to the competing philosophical ideas of contemporary mathematicians, it shows that proof and other forms of mathematical exploration continue to be living, evolving practices - responsive to new technologies, yet embedded in permanent (and astonishing) facts about human beings. It distinguishes several distinct types of application of mathematics, and shows how each leads to a different philosophical conundrum. Here is a remarkable body of new philosophical thinking about proofs, applications, and other mathematical activities.

Mathematics and logic have been central topics of concern since the dawn of philosophy. Since logic is the study of correct reasoning, it is a fundamental branch of epistemology and a priority in any philosophical system. Philosophers have focused on mathematics as a case study for general philosophical issues and for its role in overall knowledge- gathering. Today, philosophy of mathematics and logic remain central disciplines in contemporary philosophy, as evidenced by the regular appearance of articles on these topics in the best mainstream philosophical journals; in fact, the last decade has seen an explosion of scholarly work in these areas. This volume covers these disciplines in a comprehensive and accessible manner, giving the reader an overview of the major problems, positions, and battle lines. The 26 contributed chapters are by established experts in the field, and their articles contain both exposition and criticism as well as substantial development of their own positions. The essays, which are substantially self-contained, serve both to introduce the reader to the subject and to engage in it at its frontiers. Certain major positions are represented by two chapters--one supportive and one critical. The Oxford Handbook of Philosophy of Math and Logic is a ground-breaking reference like no other in its field. It is a central resource to those wishing to learn about the philosophy of mathematics and the philosophy of logic, or some aspect thereof, and to those who actively engage in the discipline, from advanced undergraduates to professional philosophers, mathematicians, and historians.