This collection, dedicated to the 70th anniversary of the birth of VasiliiSergeevich Vladimirov, consists of original papers on various branches of analysis and mathematical physics. It presents work relating to the following topics:--the theory of generalized functions--complex and $p$-adic analysis--mathematical questions of quantum field theory and statistical mechanics--computational mathematics and differential equations.

The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.

This collection contains articles that present recent results by geometers in Russia and the Ukraine. Papers in the collection deal with various questions related to the structure, symmetries, and embeddings of submanifolds in Euclidean and pseudo-Euclidian spaces. This collection offers a review of the challenges facing specialists in geometry in the large and features current research in the field.

The aim of this book is to analyse historical problems related to the use of mathematics in physics as well as to the use of physics in mathematics and to investigate Mathematical Physics as precisely the new discipline which is concerned with this dialectical link itself. So the main question is: When and why did the tension between mathematics and physics, explicitly practised at least since Galileo, evolve into such a new scientific theory? The authors explain the various ways in which this science allowed an advanced mathematical modelling in physics on the one hand, and the invention of new mathematical ideas on the other hand. Of course this problem is related to the links between institutions, universities, schools for engineers, and industries, and so it has social implications as well. The link by which physical ideas had influenced the world of mathematics was not new in the 19th century, but it came to a kind of maturity at that time. Recently, much historical research has been done into mathematics and physics and their relation in this period. The purpose of the Symposium and this book is to gather and re-evaluate the current thinking on this subject. It brings together contributions from leading experts in the field, and gives much-needed insight in the subject of mathematical physics from a historical point of view.

To summarize briefly, this book is devoted to an exposition of the foundations of pseudo differential equations theory in non-smooth domains. The elements of such a theory already exist in the literature and can be found in such papers and monographs as [90,95,96,109,115,131,132,134,135,136,146, 163,165,169,170,182,184,214-218]. In this book, we will employ a theory that is based on quite different principles than those used previously. However, precisely one of the standard principles is left without change, the "freezing of coefficients" principle. The first main difference in our exposition begins at the point when the "model problem" appears. Such a model problem for differential equations and differential boundary conditions was first studied in a fundamental paper of V. A. Kondrat'ev [134]. Here also the second main difference appears, in that we consider an already given boundary value problem. In some transformations this boundary value problem was reduced to a boundary value problem with a parameter . -\ in a domain with smooth boundary, followed by application of the earlier results of M. S. Agranovich and M. I. Vishik. In this context some operator-function R('-\) appears, and its poles prevent invertibility; iffor differential operators the function is a polynomial on A, then for pseudo differential operators this dependence on . -\ cannot be defined. Ongoing investigations of different model problems are being carried out with approximately this plan, both for differential and pseudodifferential boundary value problems.

The topics covered in this volume include Sobolev’s fundamental works on equations of mathematical physics, computational mathematics, and cubature formulas. Some of the articles are generally unknown to mathematicians because they were published in journals that are difficult to access. This is the first appearance in English of many works by this important Russian mathematician.

The book features new directions in analysis, with an emphasis on Hilbert space, mathematical physics, and stochastic processes. We interpret "non-commutative analysis" broadly to include representations of non-Abelian groups, and non-Abelian algebras; emphasis on Lie groups and operator algebras (C* algebras and von Neumann algebras.) A second theme is commutative and non-commutative harmonic analysis, spectral theory, operator theory and their applications. The list of topics includes shift invariant spaces, group action in differential geometry, and frame theory (over-complete bases) and their applications to engineering (signal processing and multiplexing), projective multi-resolutions, and free probability algebras. The book serves as an accessible introduction, offering a timeless presentation, attractive and accessible to students, both in mathematics and in neighboring fields.